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Controlling chaos
An idea of controlling chaos technique for stabilizing of unstable periodic orbits in 
dynamical systems was suggested by Ott, Grebogy and Yorke (PRL 64, No. 11. P. 
1196-1199 (1990))

A simple and effective method of chaos control by time-delayed feedback named 
time-delay autosynchronization (TDAS) was introduced by K. Pyragas (Phys. Lett. 
A 170, No. 6. P. 421-428 (1992))
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x F x x x — system with time-delayed control with 

delay time equal to period of motion to be 
stabilized

Usually T is unknown a priori
Does not allow to stabilize high-frequency motion

A.M. Dolov and S.P. Kuznetsov (Tech. Phys. 73, No. 8. P. 139-142 (2003)) —
suppress self-modulation in a microwave vacuum tube oscillator via modulation of 
electron beam current  by external feedback control signal with delay time which 
depends on self-modulation period. 



Delayed feedback oscillator



Method of chaos control

k — control parameter, ρ — attenuation produced by the VA
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Idea: To choose delay times and phases so that fundamental waves 
passing through  two feedback legs appear in same phase, while the self-
modulational sidebands appear in anti-phase and suppress each other.



Method of chaos control

Consider propagation of a modulated signal

( )2 1 2 1 2 nψ − ψ − ω τ − τ = π

( ) ( ) ( ) ( )i t i t i tA t A A e A e eω ω+Ω ω−ΩΩ − Ω ω⎡ ⎤= + +⎣ ⎦

Substituting into the boundary condition one 
can show that if we adjust the parameters as 
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we obtain
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— same as for the oscillator 
with single feedback. Non-
invasive control.

and
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Sideband waves coming from different 
feedback legs weaken and for k=1/2 
completely suppress each other



Delayed feedback oscillator with cubic nonlinearity

Nonlinear dynamics of a single-feedback oscillator (k=0) was studied in 
details in N.M. Ryskin, A.M. Shigaev. Complex Dynamics of a Simple 
Distributed Self–Oscillatory Model System with Delay, Technical Physics  
47, 795-802 (2002).
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With the increase of α — self-excitation → single-frequency generation →
self-modulation → period doublings → chaos

1 0.01ψ = π
1.5γ =

1 1τ =
3.6α =
0.7Ω ≈ π



Adding of the secondary control feedback allows to suppress self-modulation

Suppressing of self-modulaton
k=0

k=0.05

According to derivations presented above we must choose τ2=2.43, ψ2=2.02π



Same for deep self modulation after period doubling bifurcation, α=4.3

Suppressing of self-modulaton
k=0

k=0.2



20.3, 3.00γ = τ = 21.5, 2.43γ = τ =

Map of dynamic regimes on k–a plane

(1) — no generation, (2) — single-frequency generation, (3) — periodic 
self-modulation, (4) — chaos

One can see that the method works only for k < 0.3



This is caused by excitation of another sideband mode

Fundamental frequency does not depend on k while the modulation frequency 
switches to the frequency of another mode at k ≈ 0.3 

20.3, 3.00γ = τ = 21.5, 2.43γ = τ =
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Simple 4D map model (limit γ >> 1)
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Threshold of Neimark–
Sacker bifurcation,
μ=exp(iθ)

4-th order characteristic equation allows factorization in 2 second-order 
equations that are easy to solve analytically



Sensibility to mismatch of the delay parameter τ2
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Ring cavity filled with medium with cubic
phase nonlinearity (Ikeda system)
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+ + + β = Nonlinear Schrödinger equation with 
delayed boundary condition
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Nonlinear dynamics of the single-feedback (k=0) system has been studied in 
details in A.A. Balyakin, N.M. Ryskin, O.S. Khavroshin, (Radiophys. Quant. 
Electron., 2007, to be publ.).



Characteristic equation
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Modified Ikeda map (zero dispersion limit)

Analytical expressions for PD (solid) 
tangent (dashes) and Neimark–
Sacker (dots) bifurcations were 
obtained
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The same equation for the 
winding number (k > 1/3)



Bifurcation maps on A0-ϕ plane (ρ=0.5). One can see excellent agreement with
analytic theory. 1 — period 1 motion, 2 — period 2 motion, …, Ch — chaos.
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Numerical results for the modified Ikeda map



0.24k =

Numerical results for the modified Ikeda map



0.3k =

Numerical results for the modified Ikeda map

With the increase of k boundary of the Ikeda instability shifts up



0.36k =

However, for k>1/3 domain of quasi-periodic motion appears above the line of 
Neimark–Sacker bifurcation. Thus, the control is most effective for k=1/3.

Numerical results for the modified Ikeda map



I=|A(x=L)|
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Numerical results for NLS with delayed feedback
Parameters: V=1, β=1, ω”0=0.01, ρ=0.5, ψ1=0, L=5, T1=10, ω=0, A0=0.45 

Without control (k=0) deep 
self-modulation with period 
Tsm≈40 is observed

With control (k=0.2, T2=30, 
ψ2=0) we get stable single 
frequency oscillations
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Numerical results for NLS with delayed feedback
Same for the case of strong dispersion (ω0”=1). 

Now self modulation is caused by 
modulation instability, not by 
Ikeda instability (see our paper to 
be publ. in Radiophys. Quant. El., 
2007 for details). Completely 
different self-modulation period, 
Tsm≈10.

Thus we need to change the 
control feedback delay, T2=5.

k=0

k=0.2



Summary

The proposed modification of time-delayed auto-

synchronization technique for controlling chaos allows 

suppressing various instabilities in systems with time-

delayed feedback. The method is useful to provide 

stable single frequency oscillations in various RF, 

microwave and optical devices. 
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