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Controlling chaos

An idea of controlling chaos technique for stabilizing of unstable periodic orbits in
dynamical systems was suggested by Ott, Grebogy and Yorke (PRL 64, No. 11. P.

1196-1199 (1990))

A simple and effective method of chaos control by time-delayed feedback named
time-delay autosynchronization (TDAS) was introduced by K. Pyragas (Phys. Lett.
A 170, No. 6. P. 421-428 (1992))

dx
E = F[x(t)] — dynamical system with chaotic dynamics

ua Cu(t — system with time-delayed control with
dt F[X(t)]+8(x(t) X(t T)) delay time equal to period of motion to be
stabilized

Usually 7 is unknown a priori
Does not allow to stabilize high-frequency motion

A.M. Dolov and S.P. Kuznetsov (Tech. Phys. 73, No. 8. P. 139-142 (2003)) —
suppress self-modulation in a microwave vacuum tube oscillator via modulation of
electron beam current by external feedback control signal with delay time which

depends on self-modulation period.



Delayed feedback oscillator
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Method of chaos control
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k — control parameter, p — attenuation produced by the VA
Idea: To choose delay times and phases so that fundamental waves

passing through two feedback legs appear in same phase, while the self-
modulational sidebands appear in anti-phase and suppress each other.



Method of chaos control

Consider propagation of a modulated signal 0

A(t) _ |:A(0)) + A(co+Q)eiQt n A(oo—Q)e—iQt:|eimt ) o+Q

Substituting into the boundary condition one ‘

can show that if we adjust the parameters as

V.~V —60(1'2 —Il)z2ﬂ:n
Q(1,—1,)=2nm+m

we obtain

(@ (v1-08,) x(0) (o5 (@) SAMEas for the oscillator
AY =p[1-k+k]e™ AT = pe™ AT with single feedback. Non-

/nvasive control.
and
- (05, ) A (02 Sideband waves coming from different
A = p(1-2k )M gl feedback legs weaken and for k=1/2
completely suppress each other



Delayed feedback oscillator with cubic nonlinearity
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Nonlinear dynamics of a single-feedback oscillator (k=0) was studied in
details in N.M. Ryskin, A.M. Shigaev. Complex Dynamics of a Simple
Distributed Self—Oscillatory Model System with Delay, Technical Physics
47, 795-802 (2002).
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With the increase of o — self-excitation — single-frequency generation —
self-modulation — period doublings — chaos



Suppressing of self-modulaton
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According to derivations presented above we must choose 1,=2.43, y,=2.02n

Adding of the secondary control feedback allows to suppress self-modulation



Suppressing of self-modulaton
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Same for deep self modulation after period doubling bifurcation, a=4.3



Map of dynamic regimes on A-a plane
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(1) — no generation, (2) — single-frequency generation, (3) — periodic
self-modulation, (4) — chaos

One can see that the method works only for £ < 0.3



This is caused by excitation of another sideband mode

. y=0.3,7,=3.00 e y=1.5,1,=2.43
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Fundamental frequency does not depend on & while the modulation frequency
switches to the frequency of another mode at A= 0.3



Simple 4D map model (limit y >> 1)
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4-th order characteristic equation allows factorization in 2 second-order
equations that are easy to solve analytically

W —l—u((l— k)(z—ﬁji k(l—gn—[ktz—gji(l— k)(l—ﬁn =0
Y Y Y Y
a_ 3. 1 Threshold of PD o
y 2 2(1-2k) bifurcation, p=-1 N
/\

a_3 1 Threshold of Neimark— 2 :
y 2 2k Sacker bifurcation, |
p=exp(i6) 'l |
_ N

cosf=——  Winding number (k> 1/3) o 025 05 075



Sensibility to mismatch of the delay parameter ,
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Ring cavity filled with medium with cubic
phase nonlinearity (Ikeda system)
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Nonlinear Schrodinger equation with
delayed boundary condition

A(0,t)=Ae™ +(1-k)pe™ A(L,t=T,)+ kpe"> A(L,t-T,)

Nonlinear dynamics of the single-feedback (k=0) system has been studied in
details in A.A. Balyakin, N.M. Ryskin, O.S. Khavroshin, (Radiophys. Quant.

Electron., 2007, to be publ.).



Modified Ikeda map (zero dispersion limit)

A =A+(p-p)Ae

Characteristic equation

p —2p2p((1-k)+k)(cos @~ I sin®) +p? (u(1-k)+k) =0

CI):(p+|A|2

Analytical expressions for PD (solid)
tangent (dashes) and Neimark-—
Sacker (dots) bifurcations were

obtained

k-1

cos=—— The same equation for the
2k winding number (& > 1/3)
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Numerical results for the modified Ikeda map
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Bifurcation maps on A,-¢ plane (p=0.5). One can see excellent agreement with
analytic theory. 1 — period 1 motion, 2 — period 2 motion, ..., (A — chaos.



Numerical results for the modified Ikeda map
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Numerical results for the modified Ikeda map
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With the increase of & boundary of the Ikeda instability shifts up



Numerical results for the modified Ikeda map

k=0.36

0 o 2n

However, for A>1/3 domain of quasi-periodic motion appears above the line of
Neimark—Sacker bifurcation. Thus, the control is most effective for A=1/3.



Numerical results for NLS with delayed feedback
Parameters: =1, =1, ©";,=0.01, p=0.5, y,=0, L=5, 7,=10, ®=0, A4,=0.45

! I=|A(X=L)|
0551 Without control (k=0) deep
0.37 self-modulation with period

' 7.,,~40 is observed
0.181

0 = pn -

0 125 250 375 t

4 With control (k=0.2, 7,=30,

0.581 v,=0) we get stable single

frequency oscillations

0.39--W
Vi =V, _(D(T1 _Tz) =27

0.191 Q(T,-T,)=2mm+x




Same for the case of strong dispersion (o,"=1).

Numerical results for NLS with delayed feedback
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Now self modulation is caused by
modulation instability, not by
Ikeda instability (see our paper to
be publ. in Radiophys. Quant. El.,
2007 for details). Completely
different self-modulation period,
7.,~10.

Thus we need to change the
control feedback delay, 7,=5.



Summary

The proposed modification of time-delayed auto-
synchronization technique for controlling chaos allows
suppressing various instabilities in systems with time-
delayed feedback. The method is useful to provide
stable single frequency oscillations in various RF,
microwave and optical devices.
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