Techniques for Generation of Terahertz Radiation

E.V. Suvorov

Institute of Applied Physics of Russian Academy of Sciences 46, Uljanov Str., 603950, Nizhny Novgorod, Russia

FNP - 2007 July 3 - 9, 2007 "Georgy Zhukov" N.Novgorod - Saratov - N.Novgorod Russia

OUTLINE

- Motivation
- Generation by means of vacuum electronics
- Generation by means of "optoelectronics"
- "Exotic" ways
- Conclusions

T-Ray: Next frontier in Science and Technology

Terahertz wave (or T-ray), which is electromagnetic radiation in a frequency interval from 0.1 to 10 THz, lies a frequency range with rich science but limited technology.

APPLICATIONS

Spectroscopy:

Tera-imaging:

Chemistry, Aeronomy, Ecology, Radioastronomy, ...

Biology, Biomedicine, Microelectronics, Technology, Security, ...

Plasma diagnostics:

. . .

Interferometry, Faraday, Cotton-Mauton, ...

Vacuum electronics

Cherenkov generation (BWOs, TWTs, Orotrons)
Transition generation (Klystrons)
Bremsstrahlung (gyrodevices, FELs)
Scattering generation

Cherenkov generation

TWT

BWO

Orotron, or Diffraction Radiation Generator

Commercial BWOs ("ISTOK", Fryazino, Russia)

Tube	OB-30	OB-32	OB-80	OB-81	OB-82	OB-83	OB-84 *	OB-85*
Band, GHz	258 - 375	370 - 535	530 - 714	690 - 850	790 - 970	900 - 1100	1070 - 1200	1170 - 1400
Output power (min), mW	1 - 10	1 - 5	1 - 5	1 - 5	0.5 - 3	0.5 - 3	0.5 - 2	0.5 - 2
Power variation (over the band), dB	13	13	13	13	13	13	13	13
Acc. Voltage, kV	1.0-4.0	1.0 - 5.0	1.5 - 6.0	1.5 - 6.0	1.5 - 6.0	1.5 - 6.0	1.5 - 6.0	1.5 - 6.0
Cathode current, mA	25 - 40	25 - 40	30 - 45	30 - 45	30 - 45	30 - 45	30 - 45	30 - 45
Guiding magnetic field, kOe	7	9	10	10	11	11	11	11
Output waveguide	1.2x2.4	1.2x2.4	1.8x3.6	1.8x3.6	1.8x3.6	1.8x3.6	1.8x3.6	1.8x3.6

•Temporarily not produced

Submm TWTs have been also designed

Clinotron variety of BWO

(Kharkov Institute of Radio Astronomy)

mm-wave clinotron

submm-wave clinotron

Model	Frequency band, GHz	Max Output Power, W	Max. Anode Voltage, kV	Max. Anode Current, mA	Weight, kg	Cooling
CTN-5M3	53-63	11.0	4.0	200	1.2	liquid
CTN-3M3	79-98	5.0	5.0	150	1.2	liquid
CTN- 2.5M3	113-122	3.0	4.3	180	1.2	liquid
CTN- 2.2M3	120-141	2.0	4.5	160	1.2	liquid
CTN- 2.0M3	137-151	2.0	4.5	140	1.2	liquid
CTN- 0.8M8	345-390	0.1	5.0	160	12	liquid
CTN- 0.5M8	442-510	0.05-0.1	5.5	200	12	liquid
CTN-3MT	82-96	5.0	4.0	160	3.0	heatpipe

LOW-VOLTAGE OROTRONS

Cherenkov oscillator with open cavity and reflecting grating (F.S. Rusin, G.D. Bogomolov) "Diffr. Rad. Generators" (V.P. Shestopalov et al.)

Slow-wave structure creates spatial harmonics of cavity mode. The first harmonic is in synchronism with electrons: 2π

$$\omega = h_1 v = \frac{2\pi}{d} v$$

volume waves of cavity mode $k_n = \omega / c$

Amplitude of the synchronous harmonic decreases at the distance Λ^{-} Small part of electrons moving <u>over the structure</u> interacts with the wave.

In order to avoid it, electrons move inside a multiple-rod structure!

Rods: 20 μ m \times 50 μ m \times 500 μ m. Main problem: manufacturing the structures.

OROTRONS IN IAP AND GYCOM

In collaboration with Institute of Metrology of Time and Space and Institute of Spectroscopy

Th

Tv

Pa

ermionic cathode 3 mm×0.3 mm.				
Current density 30 A/cm ² .		OR-180	OR-290	OR-360
o-mirror open cavity with output				
Waveguide (Q~3,000 - 8,000).	Frequency band, GHz	100 ÷ 190	120 ÷ 300	200 ÷ 370
Aultiple-rod periodic structure.				
	Output power, mW	200 ÷ 1000	100 ÷ 200	60 ÷ 100
ckaged with permanent magnets (1.25 T. 23 kg).				
	Period of structure, μm	170	120	100
Electronic and mechanical				
frequency tuning.	Voltage, kV	0.8 ÷ 3.0	0.6 ÷ 3.7	1.1 ÷ 4.0
	Electron current, mA	< 200	< 300	< 250
	Frequency stability	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶
The second	Fine frequency tuning, %	0.03	0.02	0.02
	Pulse duration	50ns-1ms	50ns-1ms	50ns-1ms

Submm-wave gyrodevices f (THz) ≈ n (B / 36 T)

Strong magnetic field OR – high cyclotron harmonics OR – both

1. Conventional gyrotrons (n = 1,2)

- a) CW gyrotrons with frequency up to 600 GHz
- b) gyrotrons with strong pulsed magnetic fields
- 2. Large-Orbit Gyrotrons (LOGs)
- 3. Frequency multipliers

300GHz/4kW/CW Gyrotron (n=1); V.Zapevalov, e.a., 2005 MAGNETIC SYSTEM (12T LHe-free SC magnet) Collaboration with FIR Center FU

Project 400GHz/0.2kW/CW Gyrotron (n=2)

M.I.Petelin et al., 1974: 330GHz/1.5kW/CW Gyrotron (n=2)

1THz/0.5kW/100 μS Gyrotron (n=2) PULSED MAGNETIC FIELD (20T magnet) M.Glyavin, e.a., 2005

V.Flyagin, e.a., 1983: 0.65THz/40kW/50µs Gyrotron (n=1)

1THz / 1.5kW / 50µs Gyrotron (n=1) PULSED MAGNETIC FIELD (40T, LN-cooling system) M.Glyavin, e.a., 2007

ATTRACTIVITY OF HIGH CYCLOTRON HARMONICS IN LARGE ORBIT GYROTRONS

 $\omega \approx s \Omega_c$

Resonance interaction of a gyrating electron with the synchronously rotating electric multipole (2s-pole) Perfect selection over azimuthal index!

Large orbit gyrotrons V.Bratman, e.a., 2005

370-414GHz/10kW/10µs LOG (n=3) PULSED MAGNETIC FIELD (7T magnet)

Projects of 3rd-harmonic LOGs with cusp guns: 80 keV/0.7 A/10µs 13.6 T TE3,5 1 THz 1 kW 30 keV/ 1 A/ CW 7 T TE3,5 0.6 THz 0.5 kW

FREQUENCY MULTIPLICATION

Development of old idea: Gyromultiplier <u>without</u> external signal V.Bratman, G.Denisov, e.a.,2005

<u>*LF section*</u>: self-generation at the fundamental cyclotron harmonic N =1 at the frequency ω

<u>*HF section*</u>: the bunched electron beam radiates the HF wave at a multiplyed frequency, N ω , and at the high cyclotron harmonic, N

95/285 GHz gyrotron with frequency multiplication

FINAL GOAL:

to obtain THz radiation in a third harmonic CW compact gyrotron, operating in 10T cryomagnet

PROBLEMS OF CONVENTIONAL GYROTRONS:

- ✓ high starting current of operating mode
- ✓ strong mode competition
- ✓ high ohmic loses in RF circuit

PROPOSED SOLUTION:

two-cavity gyrotron with frequency multiplication. Its first cavity is self - excited at the first cyclotron harmonic. Modulated and bunched electron beam

excites forced oscillations in the output cavity at triple frequency .

95/285 GHz gyrotron with frequency multiplication. Preliminary Test results.

GYROTRON PARAMETERS:

Voltage		25kV	
Beam current	0.3A		
Pitch factor	1.4		
Operating freque	95/285 GHz		
Operating modes		TE ₀₁₁ (n=1)	
Operating modes		TE ₀₃₁ (n=3)	
	L ₁	8 ÷10 мм,	
Cavity Q_1		1780	
parameters	L ₂	12 мм,	
	Q ₂	3400	
Output power		30W	

Output power and frequency of oscillations in the first cavity vs. its length at U=23kV, J=0.25A.

Free Electron Lasers

 $\lambda \sim d / \gamma^2$

Institution	Туре	Frequency, GHz	Output Power, MW	Efficiency (%)	Beam Voltage, MV	Beam Current, A
LLNL, Livermore	amplifier	140	2000	13.3	6	2500
ILE Osaka	amplifier	110	1	0.5	0.6	200
Columbia U.	oscillator	150	5	4	0.8	150
ENEA Frascati	oscillator	110-150	0.0015	0.19	2.3	0.35
NSWC/MRC	oscillator	95	10	4	2.5	100
FOM, Nieuwegein	oscillator	200, 165	0.7, 0.4	6	1.7	7
Tel-Aviv U.	oscillator	100	0.012	3	1.4	1.4
UCBS, S.Barb.	oscillator	120-880	0.027	0.5	2-6	2
INP&ICKC, Novosibirsk	oscillator	1,700-2,500	0.6 (200 W av.)	0.5	12	10

Novosibirsk FEL

(Budker Institute of Nuclear Physics & Institute of Chemical Physics and Combustion)

Electron bunches: 12 MeV, 10 A, 0.1 ns

Radiation: 120-180 µm 50 ps 5.6 MHz 0.6 MW (peak) 200W (average)

6 working stations

Prospects: 22.5 MHz 40 MeV 5-200 μm

Optoelectronics

Short pulse generation (SPG) – Femtosecond lasers

- Fast photoconducting crystals (photoswitches)
- Optical rectification (nonlinear crystals)

Quasi-cw narrow-line THz Generation (Difference Frequency Generation – DFG)

- Photoswitches
- Nonlinear crystals

Femtosecond Lasers

 $\diamond \lambda \approx 600-800$ nm $\diamond \tau \geq 50$ fs $\diamond W \leq 100 \text{ nJ}$ ♦ F ~ 100 MHz $\diamond \langle P \rangle \sim 100 \text{ mW}$ $ightarrow P_{peak} \sim 1 MW$ \diamond Fluence ~ 10 GW/cm⁻² $F \sim 100 \text{ kHz}, \quad W \sim 1 \mu J$ With amply fiers: $F \sim 1 \text{ kHz}$, $W \sim 1 \text{ mJ}$ $< P > \sim 500 \text{ mW}, P_{\text{peak}} \sim 10 \text{ GW}$

Optical crystals

Photocond.: SOS (silicon-on-sapphire) - $\tau_{\uparrow} = 0.1$ ps, $\tau_{\downarrow} = 0.6$ ps InP, GaAs, CdTe, etc.: $\tau_{\downarrow} = 50 \div 600$ ps

EO Crystals	SC Crystals	Ornanic Crystals
Lo orystals	oo orystals	organie orystals
Quartz	GaAs	DAST
LiTaO ₃	CdTe	MOST
BaTiO ₃	GaSb	MMONS
SrTiO ₃	GaSe	
LiNbO ₃	InSb	
KNbO ₃	CdSe	
LBO	ZnSe	
GaP	InP	
SiC	Ge	
MoS ₂	Si	
ZnO		

Large-aperture photoconducting Cerenkov emitter

625 nm, 75 fs, 10 mW; SOS, InP, GaAs, CdTe: spacing 2-5 mm, $V_b \sim 100 - 3000$ V; high "dark" resistance, strong absorption, fast current rise

Zhang e.a., 1990

Current Pulse

a) THz pulse at 10 cm distance from the emitter

b) THz pulse at 100 cm distance from the emitter

THz pulse spectrum

Nonlinear generation & detection of ultra-short THz pulses

Generation of THz pulse: Optical rectification (second order nonlinear optical effect)

Input laser pulseTHz pulseI(t, $\omega, \Delta \omega$)EO crystal $E_{THz}(t, \Omega)$ $\chi^{(2)}$ $\chi^{(2)}$ $\sqrt{}$ $\Delta \tau$ P(t) $E_{THz}(t) \propto \frac{\partial^2 P(t)}{\partial^2 t}$

Dielectric polarization: $P(\Omega) = \chi^{(2)}(\Omega, \omega + \Omega, -\omega) E(\omega + \Omega)E^{*}(\omega)$

M. Bass, et al. Phys. Rew. Lett. (1962). G.A. A'skaryan, Sov. Phys. JETP (1962). Detection Electro-optical (EO) sampling (*direct E field measurements !!!*)

 τ - variable time delay

 $\frac{I_1 - I_2}{I_1 + I_2} = \pi n^3 r_{41} \frac{L}{\lambda} E_{THz}(\tau)$

J.A. Valdmanis, et al., APL (1982).

Description Description Desc

DFG - Photoswitches: microstructures low intensities \Rightarrow low THz output but - cw!

E.Peytavit, e.a., 2002

Ga-AS photodetector

2 cw Ti:Sa lasers (up to 60 mW of total power)

Active area < $10^2 \,\mu m^2$

THz radiation: max. 0.5 μ W at 0.7 THz (essentially less than exp.)

Nonlinear Difference Frequency Generation

- Microstructures are not required
- Potential for high output power

BUT:

- High intensities and strong nonlinearities are necessary
- Quasi-cw regimes instead of cw

Wei Shi e.a., 2002

Pump: Nd:YAG – 10 nsec, 6 mJ, 10 Hz; $6 \cdot 10^5$ W – peak power, 60 mW – av. Tunealbe OPO (pumped by 3-rd harm) – 5 nsec, 3 mJ, 10 Hz GaSe nonl. crystal: peak int. 17 MW/cm², (3 mm beam spot, I = 4,7,15 mm THz radiation: 0.18 – 5.27 Thz, 5 nsec, 10 Hz; peak power 70 W at 1.53 THz

Exotics: Frequency multiplication by multielement semiconductor structure; THz pulse generation in a laser spark; Quantum cascade lasers.

M.Glyavin, e.a., 2003 (experiment):

About 30x30 DBSs (10x10 mm²)

110GHz/10kW/50 μs GaAs structure 110*3= 330 GHz gyrotron radiation output radiation 30-40 mW

Project: 150-170 GHz gyrotron *(3-5)

Expected (atm. pressure): 30 THz, 10pJ/pulse

Quantum cascade lasers of THz frequency range

(Joint 30th Int.Conf. on IR/MM waves & 13th Int.Conf. on THz Electronics, 2005)

Fig. 1 Calculated conduction band diagram and wave functions of two periods of AlSb / GaSb QCL multiquantum well structure at E = 5.4 kV/cm. One division of x-axis and y-axis is 10 nm and 10 meV respectively.

1'

Fig. 3 The L-J and the E-J characteristics of the AISb /GaSb QCL.

1 period – 8 layers, 4.3/14.4/2.4/11.4/3.8/ 24.6/3.0/16.2 nm 230 periods, 4.2 K

12 Hz, 1 μs, **2.6 THz**

Conclusions

- "Terahertz gap" (from the generation point of view) is filled from both sides (vacuum electronics and optoelectronics)
- Parameters of needed THz sources are essentially defined by application requirements
- Large variety of numerous THz sources are naturally developing not being aimed to some definite application
- Practical applications of THz radiation requires development of appropriate detection and registration techniques
- A number of impressive examples of THz radiation applications are available based on different radiation sources
- The evident prospect for the nearest future: enhancement of main parameters of THz sources and of output radiation; in the application field – the progress from demonstration experiments to a wide use in scientific laboratories